skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sonta, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent research has investigated the importance of both walkable urban design and social cohesion. Social cohesion has been shown to have broad social and health benefits, and scholars have hypothesized that walkable urban design can influence cohesion, though evidence remains limited. In this work, we leveraged a data-driven approach that broke down design factors related to walkable design and investigated their impact on cohesion. We used a US-wide open urban form dataset to characterize walkable urban design, and we used an open survey dataset that measured cohesion and demographics with a total sample size of 9670 in six US cities. We leveraged partial least squared structural equation modeling for statistical analysis. We found, controlling for demographics, that land use diversity had a significant positive impact on social cohesion. We also found that physical density, social density, and transit connectedness had significant negative impacts on cohesion, though this association is largely driven by the very dense neighborhoods in cities. These findings shed light on different theories of the built environment, offering insights for designers, engineers, and policymakers interested in the social effects of the built environment. 
    more » « less
  2. We present the design and implementation of RECA, a novel human-centric recommender system for co-optimizing energy consumption, comfort and air quality in commercial buildings. Existing works generally optimize these objectives separately, or by only controlling energy consuming resources within the building without directly engaging occupants. We develop a deep reinforcement learning architecture based on multitask learning, demonstrate how it can be used to jointly learn energy savings, comfort and air quality improvements for different actions, and build a recommender system with humans-in-the-loop. Through real deployments in multiple commercial buildings, we found that RECA has the potential to further reduce energy consumption by up to in energy-focused optimization, improve all objectives by in joint optimization, and improve thermal comfort by up to in comfort and air quality focused optimization, over existing solutions. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Impact Statement The structure of social and organizational relationships in commercial building workplaces is a key component of work processes. Understanding this structure—typically described as a network of relational ties—can help designers of workspaces and managers of workplaces make decisions that promote the success of organizations. These networks are complex, and as a result, our traditional means of measuring them are time and cost intensive. In this paper, we present a novel method, the Interaction Model, for learning these network structures automatically through sensing data. When we compare the learned network to network data obtained through a survey, we find statistically significant correlation, demonstrating the success of our method. Two key strengths of our proposed method are, first, that it uncovers network patterns quickly, requiring just 10 weeks of data, and, second, that it is interpretable, relying on intuitive opportunities for social interaction. Data-driven inference of the structure of human systems within our built environment will enable the design and operation of engineered built spaces that promote our human-centered objectives. 
    more » « less
  5. Abstract This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting. 
    more » « less